Tetrahedron Letters,Vol.27,No.35,pp 4189-4190,1986 0040-4039/86 \$3.00 + .00 Printed in Great Britain Pergamon Journals Ltd.

[2,3]WITTIG REARRANGEMENT—PETERSON OLEFINATION SEQUENCE: A STEREOCONTROLLED APPROACH TO CONJUGATED DIENYNES

Koichi Mikami, Toshihiko Maeda, and Takeshi Nakai* Department of Chemical Technology, Tokyo Institute of Technology, Meguro, Tokyo 152, Japan

<u>SUMMARY</u>: A stereocontrolled entry to conjugated dienynes is described which relies upon the highly diastereoselective [2,3]Wittig variant followed by the Peterson olefination under an acidic or basic condition.

The stereocontrolled synthesis of conjugated dienynes (and trienes) is the subject of current synthetic efforts.¹ Herein we wish to report a new and stereocontrolled approach to conjugated dienynes which relies upon the highly diastereoselective [2,3]Wittig variant followed by the Peterson olefination reaction (Scheme 1). The key feature of this method is that the diene geometries are effectively controlled by sequentially combining the high (<u>E</u>)and threo-selectivity in the [2,3]Wittig process with the well-established stereospecificity in the Peterson elimination process.² Representative examples are given in Table 1. SiMe₃

The carbanion rearrangement of the bis-silylated ethers $(1)^3$ was carried out under the standard conditions (<u>n</u>-BuLi, THF, -85 °C).⁴ The diastereomerically-defined **g**-silyl alcohols (2) thus obtained were subjected to either the <u>syn</u>- (KH, THF, 0 °C) or the <u>anti</u>-elimination conditions (BF₃OEt₂, CH₂Cl₂, -78 °C) to provide the (3<u>Z</u>, 5<u>E</u>)- or (3<u>E</u>, 5<u>E</u>)-dienynes (3), respectively.

The diastereoselection observed in the present [2,3]Wittig variant deserves special comments. As seen in the table, the rearrangement of (\underline{E}) -1a (R=H) shows a high erythro-selectivity,⁵ while all the rest where R is an alkyl exhibit a high threo-selectivity, along with a high (\underline{E}) -selectivity.

4189

Substrate (<u>1</u>)	1 2							2 3				
	Yield,	% <u>E</u>	:	<u>z</u> a	erythro	: thr	eo <u>a</u>	Additive	Yield,	₹3 <u>Z</u>	:	3 <u>E</u> b
1 <u>a,</u> R=H (98% <u>E</u>)	91				97	: 3		BF ₃ OEt ₂ KH ^C	85 54	>95 < 5	:	5 95
$\underbrace{1b, R=CH_3}_{(95 \& \underline{E})}$	85	97	:	3	4	: 96		BF ₃ OEt ₂ KH	85 96	< 5 >95	: :	95 5
$\frac{1C}{100 \times E}$	80	100	:	0	3	:97		BF ₃ OEt ₂ KH	88 97	6 92	::	94 8
$\frac{1d}{(100\%)}, R=\underline{n}-C_4H_9$	61	100	:	0	11	:89		КН	92	94	:	6

Table 1. Preparation of Conjugated Dienynes via [2,3]Wittig-Peterson Sequence

^a Determined by ¹³C NMR and HPLC analyses. ^b Determined by ¹H NMR and HPLC analyses: the $J_{3,4}$ -values for the (3<u>Z</u>)- and (3<u>E</u>)-isomers are 10.2-10.8 Hz and 15.6-16.5 Hz, respectively. ^c The reaction was run after hydrogenation of <u>2a</u>.

The dramatic changeover in diastereoselection by the introduction of an \mathbf{q} -alkyl group is explicable as follows. Of the two possible transition states T_1 and T_2 , T_1 (R=H) should be sterically more favorable because T_2 (R=H) suffers a large gauche repulsion of TMS \iff C=C-TMS.⁴ In the case where

R=alkyl, however, T_1 should be greatly destabilized by an additional 1,3-repulsion of R \clubsuit C=C-TMS which would prevail over the gauche repulsion in T_2 . <u>References</u>

- T. Mandai, T. Yanagi, K. Araki, Y. Morisaki, M. Kawada, and J. Otera, J. Am. Chem. Soc., <u>106</u>, 3670 (1984), and references cited therein.
- 2) Review: D. J. Ager, Synthesis, 1984, 384.
- 3) Prepared via the etherification-silylation sequence (<u>cf</u>. ref 4) of the corresponding (<u>E</u>)-(Υ -silyl)allylic alcohol which was easily obtainable by hydride reduction of the (Υ -silyl)propargylic alcohol (<u>cf</u>. K. Mikami, T. Maeda, N. Kishi, and T. Nakai, Tetrahedron Lett., <u>25</u>, 5151 (1984).
- 4) K. Mikami, K. Azuma, and T. Nakai, Tetrahedron, 40, 2303 (1984).
- 5) A similar but somewhat unusual ($\underline{E} \leftarrow erythro$)-selection has been reported for (\underline{E})-crotyl (\underline{Y} -silyl)propargyl ether system, although the degree is much lower (<u>cf</u>. ref 4).
- 6) It is interesting to note that the high (<u>E</u>)-selectivity in the present variant is in stark contrast to the (<u>Z</u>)-selectivity reported for a similar variant involving (**B**-silyl)allylic moiety as the migrating group:
 A. D. Kaye and G. Pattenden, Tetrahedron Lett., <u>27</u>, 2033 (1986); <u>cf</u>. K. Mikami, N. Kishi, and T. Nakai, Chem. Lett., <u>1982</u>, 1643.

(Received in Japan 31 May 1986)